
2021/04/28 Verifying Multi-Agent, Multi-Resource SoCs
©2016 William C. McSpadden

1/19

Method for Verifying Consistent Access Rules
in a Multi-Agent, Multi-Resource System:

 A General Solution

(delivered to RISC-V tech-virt-mem group on 2021/04/28)

William C. McSpadden

2021/04/28 Verifying Multi-Agent, Multi-Resource SoCs
©2016 William C. McSpadden

2/19

●

● Architectural bugs are the hardest to find. And
they are often the most expensive.

2021/04/28 Verifying Multi-Agent, Multi-Resource SoCs
©2016 William C. McSpadden

3/19

The Problem

● Unit level testbenches do a good job of checking
out a building block. We know how to build Unit
Level Testbenchs. However...

● System level features are different, and can be
much more difficult.

– Ordering rules

– Performance

– Access types

– Arbitration

2021/04/28 Verifying Multi-Agent, Multi-Resource SoCs
©2016 William C. McSpadden

4/19

Main Memory
w/

Mem Ctlr

Small, Shared
Memory

Example SoC

Main uP

Audio uP

System
Ctlr

(Power Mgt, etc)

USB

Security uC

In
d

us
tr

y
S

ta
n

da
rd

 F
a

br
ic

(e
g:

 A
X

I)

PCIe

IO Hub

SoC

Example

2021/04/28 Verifying Multi-Agent, Multi-Resource SoCs
©2016 William C. McSpadden

5/19

Problem: Memory Ordering

● Different architectures have different ordering rules. Main
camps:

– Strong: Reads and writes are not re-ordered or
coalesced.

– Weak: Aggressive re-ordering and coalescing.
● This can also be an issue for the memory controller in the

chipset. Different attributes for different memory areas.

● Interrupt delivery is also a memory transaction (PCIe MSI/
X, IOAPIC, etc.)

2021/04/28 Verifying Multi-Agent, Multi-Resource SoCs
©2016 William C. McSpadden

6/19

Problem: Access types

● Different agents can have different access types:

– Endianness

– Size (8/16/32/64 bit accesses)

– Bursts (cache line, other)

2021/04/28 Verifying Multi-Agent, Multi-Resource SoCs
©2016 William C. McSpadden

7/19

Problem: Performance

● When all agents are engaged, are we meeting the
performance goals (bandwidth, latency) of our system?
How do we know, in a pre-Si environment?

● Are Quality of Service (QoS) requirements being met?
Does the stimulus adequately stress the system? Are
there checkers in place to flag QoS issues?

2021/04/28 Verifying Multi-Agent, Multi-Resource SoCs
©2016 William C. McSpadden

8/19

Problem: Arbitration

● I included this particular part of the problem, in order to
emphasize that a resource is not just a memory. In a
fabric, it includes utilization of busses, which is controlled
with an arbiter. The arbiter should be considered as a
resource.

– Note: Most issues with the arbiter are found when
doing performance measurements.

2021/04/28 Verifying Multi-Agent, Multi-Resource SoCs
©2016 William C. McSpadden

9/19

The Solution

● Set up a set of bi-directional buffers where 2 agents pass
data. Access of the buffers are controlled with a
semaphore.

● Want to make the solution as general as possible,
something that can be readily ported from project to
project, from testbench to testbench.

2021/04/28 Verifying Multi-Agent, Multi-Resource SoCs
©2016 William C. McSpadden

10/19

Peterson's Algorithm
(taken from Wikipedia article)

bool flag[2] = {false, false};
int turn;

P0: flag[0] = true;
P0_gate: turn = 1;
 while (flag[1] && turn == 1)
 {
 // busy wait
 }
 // critical section
 ...
 // end of critical section
 flag[0] = false;

P1: flag[1] = true;
P1_gate: turn = 0;
 while (flag[0] && turn == 0)
 {
 // busy wait
 }
 // critical section
 ...
 // end of critical section
 flag[1] = false;

2021/04/28 Verifying Multi-Agent, Multi-Resource SoCs
©2016 William C. McSpadden

11/19

flag[0]
flag[1]
turn

agent 0 agent 1

semaphore

buffer

Peterson's Algorithm

2021/04/28 Verifying Multi-Agent, Multi-Resource SoCs
©2016 William C. McSpadden

12/19

Memory Access Characteristics for
the Semaphore

● Basic access types: ORD8, ORD16, ORD32, ORD64...
The common access types supported by both agents.

● If single bit, must move the bit around.

● Atomic

● Access speeds: for finding bugs, fast is not always best.

2021/04/28 Verifying Multi-Agent, Multi-Resource SoCs
©2016 William C. McSpadden

13/19

Memory Access Characteristics for
the Buffer

● All access types for each agent

– Burst accesses!!

● bcopy()/memcopy()

– Some uPs have specialized/optimized versions for
performance. Use them!

● Top-to-bottom, bottom-to-top

● Data integrity check: checksum, CRC

– Checksum may not catch address ordering issues; CRC would

● Length needs to be in bytes.

2021/04/28 Verifying Multi-Agent, Multi-Resource SoCs
©2016 William C. McSpadden

14/19

Main Memory
w/

Mem Ctlr

Small, Shared
Memory

Example SoC

Main uP

Audio uP

System
Ctlr

(Power Mgt, etc)

USB

Security uC
In

d
us

tr
y

S
ta

n
da

rd
 F

a
br

ic
(e

g:
 A

X
I)

PCIe

IO Hub

SoC

Example

2021/04/28 Verifying Multi-Agent, Multi-Resource SoCs
©2016 William C. McSpadden

15/19

0x0000_0000

0xffff_ffff

0x0000_ffff

Fast Shared
SRAM

0x0000_0000

TIM

Main DRAM

Semaphore A

Buffer A

Buffer B

Semaphore B

2021/04/28 Verifying Multi-Agent, Multi-Resource SoCs
©2016 William C. McSpadden

16/19

Randomize!

● Why randomize?

– I have never worked on a project where a new random
stimulus generator did not find a bug in the first 6 hours
of use.

– It's an industry-proven method. All modern
methodologies use randomization.

2021/04/28 Verifying Multi-Agent, Multi-Resource SoCs
©2016 William C. McSpadden

17/19

Randomize!

● How to randomize this environment?

– Randomize the number of buffer/semaphore pairs.

– Put Semaphores and Buffers in random areas in
memory.

– Randomize the agents who share the pair.

– Randomize the buffer data.

– Randomize the access timing. That is, allow delays
between semaphore and buffer acceses.

2021/04/28 Verifying Multi-Agent, Multi-Resource SoCs
©2016 William C. McSpadden

18/19

Weaknesses in the Method

● Uni-directional agents (can write or read, but not both).
Think USB. Need to build a contrived solution.

● For more than 1 pair, a deadlock condition exists
(“Starving Diner” problem). Need a mechanism for
breaking deadlock.

● Not always reflexive: Upstream interrupts but downstream
semaphores.

2021/04/28 Verifying Multi-Agent, Multi-Resource SoCs
©2016 William C. McSpadden

19/19

Colophon

● Presentation prepared using LibreOffice
Impress and Draw, 4.1.2.3, on a MacBook.

● Exported to PDF using LibreOffice “export”
function.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

