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Method for Verifying Consistent Access Rules
in a Multi-Agent, Multi-Resource System: 

 A General Solution

(delivered to RISC-V tech-virt-mem group on 2021/04/28)

William C. McSpadden



2021/04/28 Verifying Multi-Agent, Multi-Resource SoCs
©2016 William C. McSpadden

2/19

●

● Architectural bugs are the hardest to find.  And 
they are often the most expensive.
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The Problem

● Unit level testbenches do a good job of checking 
out a building block.  We know how to build Unit 
Level Testbenchs.  However...

● System level features are different, and can be 
much more difficult.

– Ordering rules

– Performance

– Access types

– Arbitration
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Problem: Memory Ordering

● Different architectures have different ordering rules.  Main 
camps:

– Strong:  Reads and writes are not re-ordered  or 
coalesced.

– Weak:  Aggressive re-ordering and coalescing.
● This can also be an issue for the memory controller in the 

chipset.  Different attributes for different memory areas.

● Interrupt delivery is also a memory transaction (PCIe MSI/
X, IOAPIC, etc.)
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Problem: Access types

● Different agents can have different access types:

– Endianness

– Size (8/16/32/64 bit accesses)

– Bursts (cache line, other)
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Problem: Performance

● When all agents are engaged,  are we meeting the 
performance goals (bandwidth, latency) of our system?  
How do we know,  in a pre-Si environment?

● Are Quality of Service (QoS) requirements being met?  
Does the stimulus adequately stress the system?  Are 
there checkers in place to flag QoS issues?
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Problem:  Arbitration

● I included this particular part of the problem, in order to 
emphasize that a resource is not just a memory.  In a 
fabric,  it includes utilization of busses,  which is controlled 
with an arbiter.  The arbiter should be considered as a 
resource.

– Note:  Most issues with the arbiter are found when 
doing performance measurements.
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The Solution

● Set up a set of bi-directional buffers where 2 agents pass 
data.  Access of the buffers are controlled with a 
semaphore.

● Want to make the solution as general as possible,  
something that can be readily ported  from project to 
project,  from testbench to testbench.
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Peterson's Algorithm
(taken from Wikipedia article)

bool flag[2]   = {false, false};
int turn;

P0:      flag[0] = true;
P0_gate: turn = 1;
         while (flag[1] && turn == 1)
         {
             // busy wait
         }
         // critical section
         ...
         // end of critical section
         flag[0] = false;

P1:      flag[1] = true;
P1_gate: turn = 0;
         while (flag[0] && turn == 0)
         {
             // busy wait
         }
         // critical section
         ...
         // end of critical section
         flag[1] = false;
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Memory Access Characteristics for 
the Semaphore

● Basic access types: ORD8, ORD16, ORD32, ORD64...   
The common access types supported by both agents.

● If single bit,  must move the bit around.

● Atomic

● Access speeds:  for finding bugs,  fast is not always best.
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Memory Access Characteristics for 
the Buffer

● All access types for each agent

– Burst accesses!!

● bcopy()/memcopy()

– Some uPs have specialized/optimized versions for 
performance.  Use them!

● Top-to-bottom,  bottom-to-top

● Data integrity check:  checksum, CRC

– Checksum may not catch address ordering issues; CRC would

● Length needs to be in bytes.
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Randomize!

● Why randomize?

– I have never worked on a project where a new random 
stimulus generator did not find a bug in the first 6 hours 
of use.

– It's an industry-proven method.  All modern 
methodologies use randomization.
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Randomize!

● How to randomize this environment?

– Randomize the number of buffer/semaphore pairs.

– Put Semaphores and Buffers in random areas in 
memory.  

– Randomize the agents who share the pair.

– Randomize the buffer data.

– Randomize the access timing.  That is,  allow delays 
between semaphore and buffer acceses.
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Weaknesses in the Method

● Uni-directional agents (can write or read,  but not both).  
Think USB.  Need to build a contrived solution.

● For more than 1 pair, a deadlock condition exists 
(“Starving Diner” problem). Need a mechanism for 
breaking deadlock.

● Not always reflexive:  Upstream interrupts but downstream 
semaphores.
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Colophon

● Presentation prepared using LibreOffice 
Impress and Draw, 4.1.2.3, on a MacBook.

● Exported to PDF using LibreOffice “export” 
function.
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